[=1—{a]

This presentation covers Gen-Z Buffer operations. Buffer operations are used to move large
guantities of data between components.

Disclaimer

This document is provided ‘as is’ with no warranties whatsoever, inciuding any warranty of
merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising
ut of any proposal, specification, or sample. Gen-Z Consortium disclaims all liability for infringement of

proprietary rights, relating to use of information in this document. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted herein.

o]

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium

http://genzconsortium.org/

Buffer Operations

i i [
| Requester | Regquester |

Componentl Component 1
Component 2 2o Component 2
(Responder) (Responder)
:] { autrers] ' 1 { aurersl
‘ Buffer A » Buffern | | | auter 4 |4 lwf«al |
(A} (B}
s DBiiffar mmaratinee amable laras daba mmaameand hatiaam fas b ffare D ffar A and D ffar D v
purier operations enaonie iarge dala movement oetween TWo DUTTers—Buiier A and puiier o—oi

between two buffer vectors—vector A and vector B.
* Datamovement is done as a put from Ato Bor getfrom Bto A
* Maximum data movement size is 4 GiB
» Buffer operations can be used in point-to-point and single or multi-subnet topologies

Buffer operations are used to get data put or push up to 4 GiB of data from buffer A to
buffer B, or to get or pull data from buffer B to buffer A.

Buffer operations can used in point-to-point, single-subnet, and multi-subnet topologies.

Buffer Operations (continued)

| e | | resseser | | .QI]] .q,l. |

l 1 Componant 1 Component 2 Component 1 Component 2
Component 1 Component 1 Playponde) & [Sesponder) .
(Responder) (Responder) | Baffer & | b Buffer B ' | Buffer A I' | Bufier & '
Buffer A Buffer A
l] t) J ISuHet.ﬁ,} :Emn.] |auu.<;_,\,: !mn.]
1 L - | -—
| (s))
3 3 ¥ g l”“""*-‘l ! Buffer B, l&ul(et.k;l,. { Buffer 8,
Buffer B Buffer B
U L_J] ([) [
Buffer A, | > Buffer B Buffer A, 2 Buffer B
(A) (8) L E -

(4) (8)

[=1—{a]

Buffer operations can be used to move data within a component. For example, if a
component contains two addressable resources (primary and secondary media), then a
buffer operation can be used to put or get data from one media to the other. Further, if the
Responder contains an accelerator (e.g., an encryption / compression / graph / KVS / etc.
engine), then as the data is moved between the two buffers, the Responder can perform
additional accelerator-specific operations in parallel (these accelerations are transparent to
the application).

A vector buffer operations enables up to 4 independently-addressed buffers to be moved
between components, or within a single component.

Buffer Put Translated to a Series of Write Requests

Component A
(Buffer Responder)
Renuactar Comnanent T .

pois. Y
quester Component iWiite Requester)

Component B
(Write Responder)

—
Buffer Put {T1)
e

Wite (T100y)—_]
— e~

ACKTI000——
— (X T1001

c
-__—_____.—-d
‘f_—;_____—_——«f\-Acx T1002

*_.—-——Buffer response (T =]

A Buffer Put operation is translated by the Responder (component A) into a series of Write
requests to component B. Only the Requester and Component A need to support buffer
operations; component B only needs to support normal read and write operations.

This example illustrates how buffer operations can eliminate unnecessary data movement.
For example, in some file or storage solutions, the data needs to flow through the host
processor and memory (this is often accomplished by having component A perform a series
of DMA Writes data to host memory, sighal component B when the DMA Writes are
completed, and then component B performs a series of DMA Reads to pull the data down.

Though not shown in this example, the Requester could issue a Buffer Put request to

instruct component A to write a buffer to the Requester’s memory, i.e., the Requester

contains buffer B. This provides multiple advantages:

* Eliminates the need to provision and program work queues as well as the associated
control plane protocol overheads

* Eliminates per Requester static resource provisioning—a Responder supports N
outstanding buffer operations usable by multiple Requesters based on workload needs

* Enables all data movement to be offloaded to the Responder. Significant software stack
reductions are possible (perhaps a single processor instruction to perform a put or get
operation).

Buffer Get Translated to a Series of Read Requests

Component A
(Buffer Responder) Comnanan e}

Requester Component {Read Requester) (Read Responder)

[—
Buffer Gey (T1)
-‘-‘_‘_‘-‘——I-"h

[——Read (T1000;

ead (T1001)
Bad T~

e2d (T1902)
Sponse T e
“____...-Read Resp 11001 ———1

[———Read RESPODE
s
€ad (T n)
,._—l—'__'_-
ead Response N

| e

T1j—

o—>8uffer Response {

If the components support LDM Reads, then translated to a series of LDM Reads and LDM Read Responses

A Buffer Get operation is conceptually the same as a Buffer Put operation, except it uses
Read or Large Read operations instead of Write operations. Buffer Get operations can
improve solution efficiency by enabling data to be pulled at the rate that component A can
consume the data.. This can reduce fabric congestion as well as improve component A’s
responsiveness since it controls when the data is read.

Buffer Signaled Put

Component A
(Buffer Responder)

X Component B
Requester Component (Write Requester)

(Write Responder)

L -
———Signaled Buffer pyy (T2 CNT)
& ——

—
L Write (T1000)—_

Write (-} Sy

Signaled Write (TN, ear
L CNT)

E—
K N— |

T
4——-————Buﬁet Response (T 1)

« Buffer Signaled Put performs a Put operation and then performs a Signaled Write

« Signaled Write enables multiple threads / components to periodically poll for buffer completion
* Signaling eliminates the need to tightly coordinate multiple threads / nodes which can improve performance

[=1—{a]

There are multiple types of Buffer operations. This slide illustrates a Buffer Signaled Put
operation. A Buffer Signaled Put operation uses a Multi-Op Signaled Write to move the last
bit of data. Upon receipt of a Signaled Write, the Responder atomically updates the
signaled address. Components that periodically poll the signaled address will detect the
data modification, and take action. Using a Signaled Write eliminates the need to explicitly
coordinate the put operation completion (the Responder does even need to know which or
how many other components or process threads are polling the signaled address).
Eliminating coordination cost / complexity can yield significant performance gains and
improve solution quality and robustness.

Buffer Signaled Get

Component A
(Buffer Responder) Component B

Requester Component (Read Requester) (Read Responder)

“ViBnaied Byffe, Get (
T1, CNT)
—

:___Read (T1000) 5|
~————Read [Twou_________h
_‘—'———_____Rean‘ ETICIOzJM
4..-—-—'—"Fl ad Response LI
.....—-——-—'-"f:ad gecpanse T T1001—|
ad Response T1002=—"""|

::_-—de___ﬂ
EadfTN}

R
| g ———Read Response N
Atomically
Increment CNT

nse (TH——""|

| . ____—Buffer Respo!

+ Buffer Signaled Get performs a Get operation and then performs a local atomicincrement at the target address
* Signalingeliminates the need to tightly coordinate multiple threads / nodes which can improve performance

A Buffer Signaled Get is the read analog of a Buffer Signaled Write. Instead of a Signaled
Write as the last operation in the put, Component A performs a local atomic increment to
signal the other components or process threads.

Dynamic Buffer Allocation / Release

Beousstar Comnonent Becnon der Comnonent
Regquester Lomponent Responder Lomponent

—=Dvnam;. Buffer Allocati {
0N (A-Len)
—.

C-Free Pointer = F{C Address); Buffer Pool C
If C Pool Len z (C Free Pointer + A-Len)

Then {
B Address = C Free Pointer;
C Free Pointer += A-Len;
} Else Return Error; Buffer 0

—
. __puffer Allocate Response (B address)

* A Responder can provide dynamic buffer allocation and release services on behalf of Requesters

s Actiial bhiuffar allacatian icimnlamantatinn_esnacific
Actual buiter aliccation isimpiementaticn-specitic

* Dynamic Buffer Allocationreturns the address of the allocated buffer
+ Dynamic Buffer Release provides the address for the Responder to recover the buffer
* Architecture supports combinations of Dynamic Allocation with Put, Get, and Signaled variants

[=1—{a]

Gen-Z supports Dynamic Buffer Allocation and Release operations. Allocation can be
executed as a standalone operation or in combination with a Put, Get, or Signaled variants.
Dynamic Buffer Allocation eliminates the need for a Requester to explicitly manage buffer
allocation. For example, consider an application that continually receives new data objects
such as pictures or videos. Instead of having to identify a storage or memory resource
capable of storing each object, the Requester can simply issue a Dynamic Buffer Put to a
Responder which automatically allocates the required buffer and receives the subsequent
put data. If the Responder is a Transparent Router (TR), then it could transparently
represent any number of memory and storage components, thus supporting very large
addressable resources, variety of data preservation technologies (e.g., RAID), aggregate
performance (e.g., memory interleave), memory and storage tiers, etc. Further, since many
service providers analyze objects to identify faces, places, etc., signaled put and get
operations can be used to automatically inform any number of accelerators to
automatically analyze the object and generate additional meta data or to improve data
analytics.

Buffer Operation Observations

. ot - -

. Riffor nnar o b ctnnarted by 3y camnonent tyhe—Sol memory <torase EPGA GPLI ote
T DUITIET OpPErduons Ldin DE SUppurieud vy dny COMmMponent Lype—2uoy, IMmeimory, stordge, rruA, aru, i,
= Buffer operations simplify data movement

+ No work queues, ete. to manage—single buffer request / response

* Enables a Requester to off-load data movement to a Responder
+ For example, a SoC could ask a storage component to push or pull data to / from the SoC’s memory

» Buffer operations can improve performance in multiple ways
* Three-party data movement eliminates need for all data to flow through a SoC
+ Data movement offload minimizes application software involvement
* Signaled buffer operations eliminate multi-thread / multi-node coordination overhead and complexity
* Dynamic buffer operations offload buffer allocation / release to Responder
» Buffer operations can work with any memory media type—DRAM, SCM, Flash, etc.

* Buffer operationsare non-deterministic, so intrinsically tolerate variable media latencies

. R —— VR R R R w— .

T ey o S 1 H P Y I P
nucinedtn, DUNer uperauors dic CACLULEU USINE Stdiidalu _Reaus alnu vwiiles

o
C

+ Only Buffer Requester and Buffer Responder need to comprehend buffer operations
* Buffer B node only needs to comprehend Reads and Writes

Buffer operations provide numerous application functional and performance benefits.
Buffer operations are more than just simple put and get data movement mechanisms.
Buffer operations can be used to augment or enhance solution stacks while minimizing
data movement, or can be combined with acceleration technology to provide value-add
processing transparent to applications and middleware.

10

=]
=

ank you

This concludes this presentation. Thank you.

11

