This presentation covers how Gen-Z can be deployed using existing mechanical form factors.
Disclaimer

This document is provided 'as is' with no warranties whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample. Gen-Z Consortium disclaims all liability for infringement of proprietary rights, relating to use of information in this document. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.
All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium

http://genzconsortium.org/
To balance time-to-market pressure and performance, the Gen-Z consortium is focused on deploying media in multiple phases.

1. **Phase 1**: Enable Legacy Form Factors
 - Storage: SFF-8201/8639 based modules – 2.5” and Compact 2.5”
 - I/O: USB3, U3H-U3, U3H etc.
 - PCIe® cards with Gen-Z Bridges
 - Specifications to be published Q3 2017

2. **Phase 2**: Augmented Form Factors
 - New Gen-Z high speed connector (Specification published July 2017) deployed on:
 - PCIe Cards
 - DIMMs
 - Storage Drives

3. **Phase 3**: High Performance Modules
 - New Gen-Z Scalable Connector
 - New Gen-Z-optimized form factors – Specification to be published Q1 2018
 - Currently under development in Gen-Z Consortium Mechanical Workgroup

Deploying Gen-Z Attached Media

Multiple phases to balance Time-to-Market pressures and Performance

- **Phase 1**: Enable Legacy Form Factors
 - Storage: SFF-8201/8639 based modules – 2.5” and Compact 2.5”
 - I/O: USB3, U3H-U3, U3H etc.
 - PCIe® cards with Gen-Z Bridges
 - Specifications to be published Q3 2017

- **Phase 2**: Augmented Form Factors
 - New Gen-Z high speed connector (Specification published July 2017) deployed on:
 - PCIe Cards
 - DIMMs
 - Storage Drives

- **Phase 3**: High Performance Modules
 - New Gen-Z Scalable Connector
 - New Gen-Z-optimized form factors – Specification to be published Q1 2018
 - Currently under development in Gen-Z Consortium Mechanical Workgroup
The Gen-Z Consortium has published specifications that enable Gen-Z in 2.5” SSD form factors with the U.3 SFF-8639 connector. The layouts shown here are conceptual to show the different media support capabilities. In addition, the form factor could support accelerators, FPGAs or Gen-Z bridges and gateways.
The 2.5” compact form factor shown here, is a truncated 2.5” form factor that can be deployed in both internal and front pluggable implementations. The same PCA can be mounted in a carrier for front pluggable applications or placed internally to a 2U server.
The compact form factor can support multiple media, just as the 2.5” form factor, and also leverages the SFF-8639 U.3 connector. Additional mechanical details are shown here.
Shown here, is the U.3 SFF-8639 with a modified pinout to support 8 differential pairs of Gen-Z. Pins S1 through S14 and S16 through S28 support the Gen-Z data signals, while E23 and 24 support the management signals. Please refer to the SFF-9639 specification for the latest definitions of the remaining pins.
To enable Gen-Z connectivity, a Gen-Z I/O component can be deployed in a PCIe card form factor. The I/O component supports one or more Logical PCI Devices (LPDs) which surface PCI or PCIe functions. Shown here is an example of the Gen-Z I/O component in a PCIe card form factor. In this example, the Gen-Z signals are cabled to a U.3 enabled backplane from the PCIe card.
For the full SFF-8639 based Gen-Z specifications, please refer to the Gen-Z consortium’s specification page. For news and the latest updates, please refer to the consortium’s website where new papers, educational materials, draft and final specifications, and much more is published on a regular basis.
Thank you

This concludes this presentation. Thank you.